Run Run Shaw Library
 Run Run Shaw Library
 

Home >
1_Outstanding Academic Papers by Students >
OAPS - Dept. of Physics & Materials Science >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2031/7469

Title: 3-APTES modified graphene oxide strengthened dissolving polymer microneedle arrays for transdermal delivery
Authors: Ng, Chung Chung (伍聰聰)
Department: Department of Physics and Materials Science
Issue Date: 2014
Course: AP4116 Dissertation
Programme: Bachelor of Engineering (Honours) in Materials Engineering
Instructor: Dr. Chen, Xianfeng
Award: Won the Merit Prize in the HKEIA Innovation & Technology Project Competition Award For Students of Electronic Engineering or Related Engineering Fields (2014) organized by The Hong Kong Electronic Industries Association Ltd. (HKEIA) and Hong Kong Electronic Industries Association Education Foundation.
Subjects: Microinjections.
Transdermal medication.
Drug delivery systems.
Graphene -- Oxidation.
Citation: Ng, C. C. (2014). 3-APTES modified graphene oxide strengthened dissolving polymer microneedle arrays for transdermal delivery (Outstanding Academic Papers by Students (OAPS)). Retrieved from City University of Hong Kong, CityU Institutional Repository.
Type: Research project
Abstract: Dissolving polymer microneedle arrays have been widely used in transdermal delivery of molecules since 2008 due to their ease of fabrication and great biocompatibility. It has been reported that the microneedle arrays can be used in biomedical, cosmetic and industrial fields such as vaccine delivery. However, pure dissolving polymers generally have weak mechanical properties, which is an inherent problem in using the fabricated microneedle arrays for transdermal delivery. To address the issue, one strategy is to add nanomaterials to polymers for the formation of nanocomposites for improved properties. In this report, different graphene oxide (GO) derivatives were incorporated into carboxymethylcellulose sodium (CMC) under various conditions and various properties were investigated. The Young’s modulus and hardness of the samples were measured by nanoindentation and micro tensile test. The thermal properties were determined using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The result indicated that the nanocomposite containing 3-aminopropyltriethoxysilane (3-APTES) modified GO in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/ N-hydroxysuccinimide (EDC/NHS) displays a significant improvement of mechanical properties in comparison with pure polymer , and there was an increase of 118% and 185% of that nanocomposite from 0 wt% to 5 wt% in terms of Young’s Modulus and hardness respectively. Moreover, other nanocomposites like 3-APTES modified GO/CMC without EDC/NHS and GO/ CMC thin films from 0 wt% to 5 wt% were also shown different degrees of enhancement of mechanical properties compared with pure CMC polymer. Afterwards, the most of CMC polymer microneele arrays with different GO nanocomposites fabricated were shown the accurate shades and sizes by the observation of scanning electron microscope (SEM).
Appears in Collections:Student Works With External Awards
OAPS - Dept. of Physics & Materials Science

Files in This Item:

File Description SizeFormat
fulltext.html154 BHTMLView/Open
authorpage-Ng_Chung_Chung.html166 BHTMLView/Open

Items in CityU IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0!
DSpace Software © 2013 CityU Library - Send feedback to Library Systems
Privacy Policy · Copyright · Disclaimer